
Lecture 9 - Oct 1

Graphs

Mathematical Induction: Degree Sum
Paths, Cycles, Reachability
(Spanning vs. Connected) Subgraphs



Announcements/Reminders

• First Class (Syllabus) recording & notes posted
• Today’s class: notes template posted
• Exercises: 

+Tutorial Week 1 (2D arrays)
+ Tutorial Week 2 (2D arrays, Proving Big-O)
+ Tutorial Week 3 (avg case analysis on doubling strategy)
+ Tutorial Week 4 (Trinode restructuring after deletions)



Properties: Sum of Degrees for Undirected Graphs
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Graph: Paths and Cycles
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• Path
• Cycle
• Simple Path
• Simple Cycle
• Reachable
• Reachable Paths
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- subgraph
-

spanning subgraph
- connected subgraph
- forest
- tree

-

spanning tree



Graph: Subgraphs and Spanning Subgraphs

A

B

C
D

E
Fm

n

o
p

q
r

s
t

G= (N -
El

↳
subgraph G = CV's E'S ③ adbath spanning

,
just a single edge.

V'2 NX E'CE DGs = (SAsBoC3
,
(m .g3)

DG1 emptygi subgraph G can be its own subgraph!o
v= d + E= 0
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"max subgraph
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,

SpanningSubgraph -> a subgaiat "spansall vertises
throug
↳ G = CViE's
is a spanning subgraph of G
-
V = Vx ECE

(1) Gi = (98sBiSPEcF3 , P) spanning #
connected
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Graph: Subgraphs and Spanning Subgraphs
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Formulate a condition of a graph G’ = (V’, E’) that is a 
subgraph, but not a spanning subgraph, of G = (V, E).
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Graph: Connected Graph
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Is a spanning subgraph also connected subgraph?
Hint: Consider G2 = ({A, B, C, D, E, F}, {m, p, s, t, r})
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G = (VsE)

Connected (G) <E

EX
,yoXUxyEV => X is reachablefrom of

only reg. vertisBritnconnections

maximal subgraph connectednentanothe maximeconnectedconnected subgraph spanning graph
- Connectedachablet)but not



Connected Component of G
&
a maximal connected subgraph of G

↓
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Graph: Connected Components

How many connected components 
does the graph have?

ca

c2& Between each pair of CCs
,

saf CG and CC2
,

3 Ex,X is a vatex inaif is a vertex in 122
[C3 Xo % => X is not reachable

from


