Lecture 9 - Oct 1

Graphs

Mathematical Induction: Degree Sum Paths, Cycles, Reachability (Spanning vs. Connected) Subgraphs

Announcements/Reminders

- First Class (Syllabus) recording & notes posted
- Today's class: notes template posted
- Exercises:
 - + Tutorial Week 1 (2D arrays)
 - + Tutorial Week 2 (2D arrays, Proving Big-O)
 - + Tutorial Week 3 (avg case analysis on doubling strategy)
 - + Tutorial Week 4 (Trinode restructuring after deletions)

2. (m+d) > 1 eda Properties: Sum of Degrees for Undirected Graphs Given a simple undirected graph G = (V, E) with |E| = m: \sum degree(v) = $2 \cdot m$ Strategy of Proof: Perform a M.I. on V χ |E|=0. χ degree (x)=0=2. |E| χ |E|=0. χ ke a strictly larger graph with k+ largetings Z degree(v) = 2. m $\geq degree(v) = 7.m + (0) +$

- subgraph - spanning subgraph
- connected subgraph
- tovest - tree - spanning tree

Graph: Subgraphs and Spanning Subgraphs

Spanning Subgraph > a subgraph "spans" | vertices. A POEPS

TODO

TOD Ly G' = (V', E')75 a spanning subgraph of G G' = (V', E') G' = (V', E')(1) $G_1' = (G_1, B_2, C_1, F_2, F_3, \phi)$ spanning \neq connected z, Gz = ({A, B, t, P, F, F3, {m, 0, p3}})

Graph: Subgraphs and Spanning Subgraphs

Formulate a condition of a graph G' = (V')(E') that is a subgraph, but <u>not</u> a spanning subgraph, of G = (V, E).

Connected Component of G a maximal connected subgraph of G no futher is male merent
extension to male connected
possible larger subgraph

Graph: Connected Components

How many connected components does the graph have?

Between each part of CG, say CC1 and CCz,

JX, y · X is a vatex in CC/ ^

JCCZ y is a vatex in CCZ

y is a vatex in CCZ

tion of